
Configuration Management for
Data-Driven Systems Engineering

GUIDE

SPECINNOVATIONS.COM

http://specinnovations.com/innoslate

01CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

INTRODUCTION
Data-Driven Systems Engineering (DDSE) poses distinct challenges in Configuration Management. This guide aims to outline

strategies for implementing Configuration Management (CM) in an Innoslate-powered Digital Engineering Environment (DEE).

Innoslate, a comprehensive Model-Based Systems Engineering (MBSE) and requirements management solution, offers a rich feature

set that establishes an authoritative source of truth in an integrated DEE.

CONFIGURATION MANAGEMENT
Configuration Management (CM) refers to the methods used for maintaining control of a system’s requirements, architecture, state,

and supporting processes throughout its lifecycle. It is typically described, to varying levels of detail, within a program’s Systems

Engineering Plan (SEP) and Configuration Management Plan (CMP).

NIST SP 800-53 CM-2 defines baseline configurations as “documented, formally reviewed, and agreed-upon specifications” that

“serve as a basis for future builds, releases, or changes.” Configuration change controls formalize how changes to a baseline

configuration are made. NIST SP 800-53 CM-3 states that configuration change control includes:

1

2

Determining and documenting the types of changes that are

configuration-controlled.

Reviewing and approving/disapproving changes that are

configuration-controlled.

Documenting configuration-controlled change decisions.

Implementing approved configuration-controlled changes.

Monitoring and reviewing configuration-controlled changes.

Retaining records of configuration-controlled changes.

Two additional aspects of configuration management are:

Identifying proposed configuration-controlled changes.

Implementing change control mechanisms.

http://specinnovations.com/innoslate

02CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

Figure 1 shows the CM actions discussed in this guide. These actions fall within three major

categories: Configuration Baselining, Change Management, and Configuration Control.

Figure 1. CM Actions

MANAGING CHANGE
CONFIGURATION BASELINING
An Innoslate baseline consists of any approved configuration, such as a specification

functional architecture, or physical architecture. It includes specified Innoslate entities

along with designated relationships.

BASELINING DOCUMENTS
Innoslate Documents include specifications and plans. They consist of hierarchically

sequenced Statements and Requirements entities. Innoslate Documents can be baselined

by using Innoslate’s Document Baseline feature. This feature leverages entity history to

capture and store document baselines (i.e., snapshots in time). Document baselining

prevents modifications to the baseline, but not the current state of the entities comprising

the document. Document baselining does not prohibit document deletion, which must be

addressed through other configuration controls.

Baselined Innoslate Documents should be retained in the organization’s CM system. For CM purposes, retain:

Externally viewable document: Generate from Documents View by selecting ‘Report’ then ‘Basic Document Output (DOCX).’

Products necessary to reconstruct the document within Innoslate: Generate in Documents View by selecting ‘Report,’ then:

Document ZIP Output (INNO) backup file with the ‘Include Baselines’ option.

Basic Tabular Output (CSV) file with ‘Global ID’ and ‘Relationships’ selected.

http://specinnovations.com/innoslate

03CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

BASELINING ARCHITECTURES
Architectures include any set of related Innoslate entities. Typically, this includes entities that support physical, functional, or

hierarchical models. These entities may align with DoDAF or UAF Viewpoints. Architectures are baselined through management

declaration, which should be supported by CM policies, state what constitutes the baseline, and institute baseline configuration

controls. For example, a physical architecture baseline may include component-level Asset entities with ‘decomposes,’ ‘connected to,’

and ‘performs’ relationships while specifically excluding ‘decomposed by’ relationships.

Baselined architectures should be retained in the organization’s CM system. For CM purposes, retain:

Products necessary to reconstruct the document within Innoslate: Generate from within Database View by selecting ‘Report,’ then:

Innoslate ZIP Output (INNO) backup file with the ‘Include Baselines’ option.

Basic Tabular Output (CSV) file with ‘Global ID’ and ‘Relationships’ selected.

Key portions of architecture as an externally viewable document: Generate by navigating to the architecture’s root entity, opening

in Entity View, selecting ‘Report,’ and ‘Hierarchical Report (DOCX)’ with desired diagram types.

CHANGE MANAGEMENT
Change Management is the process of managing changes to configuration baselines. It consists of seven CM actions: Define,

Identify, Review, Decide, Implement, Verify, and Retain.

DEFINE
Policies should be established that define the types of changes that are configuration-controlled at a given point in time. A notional

configuration-controlled change policy is shown in Table 1 on the following page. Configuration-controlled changes require formal

approval before implementation.

http://specinnovations.com/innoslate

04CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

Timeframe Item Configuration-Controlled Changes

Post-PDR

SRD Requirement Name, Number, Description, Rationale; ‘refines’ Relationship

Functional Model Actions Name, Number, Description

System/Subsystem Assets Name, Number, Description

Post-CDR

SRD Requirement Name, Number, Description, Rationale; ‘refines,’
‘refined by,’ ‘traced to’ Relationships

SSS Requirement Name, Number, Description, Rationale; ‘refines’ Relationship

Functional Model Actions Name, Number, Description; ‘generates,’ ‘performed by,’
‘receives,’ ‘traced from’ Relationships

System/Subsystem Assets Name, Number, Description; ‘connected to,’ ‘performs’ Relationships

Table 1. Notional Configuration-Controlled Change Policy

IDENTIFY
Proposed changes to configuration-controlled items within Innoslate should be identified in a Change Request (CR) or Engineering

Change Proposal (ECP). CRs establish the impact of proposed baseline changes and document the Innoslate implementation steps.

CR formats may vary, but should include the following key elements:

Information: provides administrative information on the CR,

including number, title, submission date, originator, urgency

(e.g., Routine, Emergency), and type (e.g., Editorial, Technical).

Description: provides a high-level description of what the

change will accomplish.

Status: describes the location within the CR workflow.

Rationale: describes why it is necessary to implement the

change.

Proposed Solution Table: provides detailed steps for

implementing the CR in Innoslate.

http://specinnovations.com/innoslate

05CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

The Proposed Solution Table consists of sequentially executed steps to be followed in Innoslate by the implementer. It should

minimally include the following columns:

Entity Information: Contains the entity’s number and/or

name.

Location: Contains the entity’s URL.

Change Description: Contains a description of the change to

the entity.

Change Category: Specifies the entity attribute name, label,

or relationship to be changed (e.g., Name, Description, Label,

Relationship).

Change Type: Specifies the type of change, to include: Add,

Modify, or Delete.

Current Value: Contains the current value associated with

the Change Category, if applicable.

Proposed Value: Contains the proposed value associated

with the Change Category.

Notes: Contains any additional explanatory notes to clarify

the proposed change.

REVIEW
CRs are reviewed by a Change Control Board (CCB). The CCB should be comprised of management, CM personnel, and technical

experts. CCB meetings held to review CRs should include both the CR originators and implementers in attendance.

DECIDE
The CCB will approve or disapprove proposed baseline changes detailed in CRs. CCB decisions must be formally documented and

retained. This can occur within the CR form or through the use of related Decision entities (i.e., Decision ‘enabled by’ Artifact).

IMPLEMENT
Approved CRs are implemented by a designated implementer with the appropriate Innoslate project permissions. The CR’s Proposed

Solution Table steps should be implemented in the sequence provided. Failure to adhere to the CR’s step execution sequence may

result in broken dependencies (e.g., a link to an entity that has not yet been created) or confusion as to which parts of the table

remain to be implemented. For large tables, the implementer should consider marking the individual steps as complete.

http://specinnovations.com/innoslate

06CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

VERIFY
CM personnel should monitor and verify changes to configuration-controlled data. Erroneous or unauthorized changes should be

backed out and logged. For Innoslate Documents, CM personnel should review Post-Baseline Change Reports (PBCRs). PBCRs provide

a detailed log of all changes occurring to a document’s entities following each baseline. PBCRs should be compared against the

approved CR’s Proposed Solution Table. For architectures, CM personnel should review CR project modifications by comparing

individual entities against the approved CR’s Proposed Solution Table.

RETAIN
Retain records of all configuration-controlled changes. If CRs are implemented as Innoslate Documents, retain them for CM purposes

as externally viewable documents. To generate an externally viewable document from within Documents View, select ‘Report’ then

‘Basic Document Output (DOCX).’

CONFIGURATION CONTROL
Innoslate employs multiple data control mechanisms that can be used

to prevent unauthorized data modifications, as shown in Figure 2.

Timeframe Project User [Permission]

Initial System
Developer SE Team [Collaborator]

Developer Non-SE User [Collaborator]
Customer [Reviewer]

Post PDR System
Developer SE Team [Collaborator]
Developer Non-SE User [Reviewer]

Customer [Reviewer]

Figure 2. Data ControlsPROJECT ACCESS PERMISSIONS
Project access permissions control the privileges that users have within

a project. Segregation of data across projects allows different users

and user groups to have permissions appropriate to the program

phase. For example, as shown in Table 2, all developer users may

initially have Collaborator access to a system-level project. Following

PDR, non-SE users may be downgraded to Reviewer access. Optimal

use of project access permissions requires upfront planning in

conjunction with the development of a Conceptual Data Model (CDM). Table 2. Notional Project Access Permissions

http://specinnovations.com/innoslate

07CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

DOCUMENT BASELINING
Document baselining prevents modifications to the baseline, but not the current state of the entities comprising the document.

Document baselining does not prohibit document deletion, which must be addressed through other configuration controls.

ENTITY LOCKING
Entity locking prevents changes to entity attributes, labels, and relationships. Entities can only be unlocked by the locking collaborator

or project owners. Entity locking is frequently used to provide protection from inadvertent or unauthorized changes being made by

project Collaborators.

IMPLEMENTING CHANGE MANAGEMENT
CHANGE REQUESTS (CRS)
There are two primary options for implementing

CRs within Innoslate. Option 1 consists of an

Innoslate-based CR form implemented within

Documents View. This CR form can contain either

a textual (Option 1a) or dynamically constructed

(Option 1b) Proposed Solution Table. Option 2

consists of storing Excel CR forms as Artifact

entity attachments. The benefits and required

effort for the CR implementation options are

shown in Figure 3.

Figure 3. CR Implementation Option Benefits and Effort

http://specinnovations.com/innoslate

08CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

OPTION 1A: INNOSLATE-BASED CR WITH TEXTUAL PROPOSED SOLUTION TABLE
CR Implementation Option 1a consists of creating and saving a CR template within Documents View. First, use the Schema Editor to

create a “CR Document” label for class Artifact. Then, create a blank document of type ‘CR Document’ and add content sections as

specified in the Identify section. The Proposed Solution Table should be inserted with the ‘Table…’ insert option. Back up your document

by running a ‘Document ZIP Export (INNO)’ report.

Add the CR template to the project from Documents View by selecting ‘More’, selecting, ‘Template,’ entering, “Change Request,” for the

template name, and selecting, ‘Create.’ This will result in a new Artifact named ‘Change Request’ being created. It is recommended to

lock that entity to prevent inadvertent deletion. New CRs are created by selecting document type ‘CR Document’, template ‘Custom

Template’, and custom template ‘Change Request’.

OPTION 1B: INNOSLATE-BASED CR
WITH DYNAMICALLY CONSTRUCTED
PROPOSED SOLUTION TABLE
CR Implementation Option 1b is implemented

in the same way as Option 1a, with the

exception of the Proposed Solution Table.

Option 1b’s Proposed Solution Table is

dynamically created by querying the project

database for the associated solution steps.

Use the Schema Editor to create a “CR

Solution Step” class. “CR Solution Step” should

be a subclass of Statement and minimally

contain the attributes shown in Table 3.

Attribute Type Description

Entity Information TEXT The entity’s number and/or name

Location URI The entity’s URL

Change Description BIG_TEXT A description of the change to the entity

Change Type ENUMERATION The type of change: Add, Modify, or Delete

Change Category TEXT The entity attribute name, label, or
relationship to be changed

Current Value BIG_TEXT The current value associated with the
Change Category, if applicable

Proposed Value BIG_TEXT The proposed value associated
with the Change Category

Notes BIG_TEXT Additional explanatory notes to
clarify the proposed change

Table 3. CR Solution Step Attributes

http://specinnovations.com/innoslate

09CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

Create new CR Solution Step entities from the database view.

CR Solution Steps should be numbered sequentially using their

corresponding CR number prefix. Add the Proposed Solution

Table to the CR template by inserting it with the ‘Table

Notation…’ insert option. Within the ‘Insert Table Notation’

pop-up, as shown in Figure 4, enter the solution step query,

select the ‘CR Solution Step’ attributes, and enter a query limit

high enough to retrieve all of the CR’s solution steps. Figure 4. CR Solution Step Insert Table Notation Pop-Up

When new CRs are created from the CR template, the table notation query will need to be updated by the user to retrieve CR Solution

Steps corresponding to the new CR number. A CR’s Proposed Solution Table can be exported as an Excel spreadsheet for the

implementer. From Database View, query and sort for the CR’s solution steps (e.g., order:number class:”CR Solution Step”

number:CR.###.% where ### is the CR number). Generate an Entity Table Report with the CR Solution Step attributes from Table 3.

OPTION 2: ATTACH EXCEL CR TO ARTIFACT
CR Implementation Option 2 consists of creating an Artifact entity for each Excel CR. This Artifact should be numbered to match the

CR number contained within the Excel CR form. The Excel CR is added to the Artifact as an attachment.

CR WORKFLOW
CR workflow can be modeled in Innoslate as a

State Machine Diagram] (SMD), shown in Figure 5.

The CR workflow SMD can be implemented in a

project’s schema by:

Creating a ‘Change Request’ class with an enumerated status field representing CR states.

Creating a ‘Change Request Status’ workflow to implement CR state transitions.

Figure 5. CR Workflow State Machine Diagram

http://specinnovations.com/innoslate

IMPLEMENTING CR WORKFLOW STATES
Use the Schema Editor to create a “Change Request” class. “Change Request” should be a subclass of Artifact and minimally contain

an enumerated attribute named “Status.” “Status” should have values matching the states shown in Figure 5: ‘Proposed,’ ‘Approved,’

‘Rejected,’ ‘Implemented,’ and ‘Closed.’ Set the default value for “Status” to ‘Proposed.’ If CRs are implemented as Innoslate Documents

(Options 1a & 1b), then:

Use the Schema Editor to update the ‘CR Document’ label to add the class ‘Change Request.’

Create a CR template based on the ‘Change Request’ class.

If a CR template does not exist, then:

Create the document as described in the Option 1a section.

Before adding it as a template, navigate to Database or Entity View and transform the source Artifact to the ‘Change

Request’ class.

Reopen the document in Documents View and add it as a template.

If a CR template already exists, then:

Create a new unpopulated document from the CR template.

Navigate to Database or Entity View and transform the source Artifact for this new document to the ‘Change Request’ class.

Reopen the new document in Documents View and add it as a template.

Lock the new template’s Change Request entity in Database or Entity View.

Delete the old templates Artifact entity.

If desired, navigate to Database or Entity View and transform the source Artifacts for any legacy CRs to the ‘Change Request’

class.

If CRs are implemented as Artifacts with Excel CR attachments (Option 2), simply create new ‘Change Request’ class entities for all

future CRs. Existing CRs can be transformed from Artifact to the ‘Change Request’ class.

10CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

http://specinnovations.com/innoslate

11CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

IMPLEMENTING CR WORKFLOW STATE TRANSITIONS
To implement the CR workflow state transitions, select ‘Workflow’ from within the Schema Editor. Select ‘Add Workflow Class’ and the

‘Change Request’ class. If necessary, select the ‘Status’ enumerated property. Define the workflow transitions for each ‘Status’ state by

selecting ‘Add Transition’, the name of the target transition state, users/teams with permission to transition the state, and

users/teams notified of the state transition.

For example, in Figure 5, the ‘Proposed’

state has two transitions. When

defining the workflow, ‘Add Transition’

will be used to select ‘Approved,’

creating the ‘Proposed to Approved’

transition, and to select ‘Rejected,’

creating the ‘Proposed to Rejected’

transition, as shown in Figure 6.

Figure 6. ‘Proposed’ Status Transitions

The Innoslate CR workflow should be used in conjunction with CR procedures defined in the organization’s CMP. From within Database

View, CR status reports can be generated using the Entity Table Report with ‘Status’ selected as a column attribute.

CONCLUSION
Innoslate allows an organization to maintain control of a system’s requirements, architecture, state, and supporting processes

throughout its lifecycle. It provides versatile features for controlling and tracking change at different levels of granularity. Innoslate

provides the capability to implement and supplement processes within an organization’s CMP.

http://specinnovations.com/innoslate

12

[1] U.S. Department of Commerce, NIST SP 800-53 CM-2,

Rev. 5 Security and Privacy Controls for Information Systems

and Organizations § (2020).

[2] U.S. Department of Commerce, NIST SP 800-53 CM-3,

Rev. 5 Security and Privacy Controls for Information Systems

and Organizations § (2020).

REFERENCES

CONFIGURATION MANAGEMENT FOR DATA-DRIVEN SYSTEMS ENGINEERING
specinnovations.com

http://cloud.innoslate.com/signup
http://specinnovations.com/innoslate

