

Systems and Proposal Engineering Company, dba
SPEC Innovations was founded in 1993. The

company has worked on significant architecture
and systems engineering projects for the DoD, DOE,

and other government and commercial
organizations. Learn more at
www.specinnovations.com.

We began the development of Innoslate in 2010
when we found it challenging to do the work we

needed to do with the limited tools available at the
time. Innoslate was first released in 2012 on the

cloud and is currently in version 4.7 as a full lifecycle
tool, with integrated Systems Engineering and

Program Management capabilities. It uses the open
standard, Lifecycle Modeling Language (LML), as its

open ontology.

Innoslate currently supports users around the world
and is also available on NIPRNET, SIPRNET, and C2S,
as well as behind your own firewalls. You can learn

more about Innoslate by going to our website,
www.innoslate.com.

-1-

What is the Return on Investment (ROI) of Model-Based
Systems Engineering (MBSE)? This question is one that
many people ask. In fact, the International Council on
Systems Engineering (INCOSE) has that as one of its tasks
for their Value Proposition Initiative. A group of systems
engineers is trying to find evidence to prove that MBSE has
value. However, that becomes very difficult for a concept
that has only been around for a dozen years, when the
lifecycle of many of the systems of interest is measured in
several decades.

We can approach this question by inference. If there is a
significant return on investment in systems engineering,
then we can infer that there might be one for MBSE.
Fortunately, we do have many decades of experience
applying systems engineering to projects since the 1950s
(at least, depending on how you define systems
engineering). One of the best analyses I have come across
over the years was a very interesting piece of work by
Werner M. Gruhl who was at the time the Chief of the Cost
& Economics Analysis Branch at NASA. His work was
published in a NASA technical paper entitled, “Issues in
NASA Program and Project Management” (NASA SP-6101
(08), in 1994. In a paper by Ivy Hooks in this publication, she
states that “if the program requirements are not well
understood, there is not much hope for estimating the cost
of a program.” She continues: “Werner Gruhl developed a
history of NASA programs versus cost overruns” and cited
the diagram below (redrawn due to the poor quality of the
document found – an old scanned PDF). She interpreted
this chart as “if you have not done a good job in Phase A
and B in defining and confining your program, you are
going to encounter large numbers of changing
requirements and the cost will go up accordingly.” Note
that the figure below indicates the % Spent on Systems
Engineering, which is really Phase A and B in NASA
terminology.

-2-

-3-

Thus, it’s clear that at least the combination of program
management and systems engineering, which is what
allows you to properly develop the set of requirements for
the program, is required to keep the cost of the project
from skyrocketing. Note that program management and
systems engineering are flip sides of the same coin. The
program manager optimizes cost, schedule, and
performance while mitigating risk in each of these areas.
The systems engineer is tasked to do the same for the
system. That’s why these two disciplines have been seen to
overlap, which was recognized in a recent book by INCOSE
and the Program Management Institute (PMI).

Another more recent attempt at qualifying the value of
systems engineering came from the Software Engineering
Institute. They conducted several studies to determine the
value of systems engineering, including one documented
in their November 2012 paper entitled “The Business Case
for Systems Engineering Study: Results of the Systems
Engineering Effectiveness Survey.” The authors “found
clear and significant relationships between the application
of SE best practices to projects and the performance of
those project” as seen in the figure below.

In a later presentation by Mr. Joseph P. Elm, one of the
authors of the 2012 paper, on “Quantifying the
Effectiveness of Systems Engineering,” he cites a finding
for a General Accountability Office (GAO) report (GAO-09-
362T) that states:

“… managers rely heavily on assumptions about system
requirements, technology, and design maturity, which are
consistently too optimistic. These gaps are largely the
result of a lack of a disciplined systems engineering
analysis prior to beginning system development …”

So, it is recognized that there is great value in performing
at least the “right amount” of systems engineering. If we
use the Gruhl graph as a basis, we need to spend around 7-
12% of the program’s budget on the combination of
program management and systems engineering. Since the
cost of the program could as much as double on average
according to the chart, the return would be about 10 times
the investment. For example, if we spent $100,000 on
systems engineering and program management and the
overall cost of the program was $1,000,000, then since the
cost could have doubled to $2,000,000, we save $1,000,000.

-4-

Project Performance vs. Total SE Capability

Requirements Development
Requirements Management
Trade Studies
System Architecture Development
Interface Management
Configuration Management
Program Planning
Program Monitoring and Control
Risk Management
Product Integration Planning and Oversight
Verification Planning and Oversight
Validation Planning and Oversight

So now that we agree there is a substantial return on
investment in systems engineering, let’s get back to the
question of ROI on MBSE. The question here is then, “Does
modeling help systems engineering.” Since we have always
done modeling in systems engineering, I think that is
clearly a part of good systems engineering. But the flavor
of MBSE being pushed by many in the community has
equated MBSE to SysML and many have also equated
SysML as implemented by MagicDraw. But do SysML and
MagicDraw® do all the things we need to do in systems
engineering? In particular, do we obtain a good set of
system requirements in a form easily used by all the
stakeholders?

To begin to answer these questions, let’s go back to Mr.
Elm’s paper. He states that the systems engineer must
perform the following tasks:

SysML consists of nine diagram types, most of which were
derived from software engineering practices, not systems
engineering. Yes, there is overlap between the two, but not
as much as the overlap between systems engineering and
program management. That becomes obvious from the
task list above, many of which include explicitly the word
“management.”

-5-

-6-

SysML also has proven to be very difficult for most other
disciplines to understand, since they speak other
languages. It also takes at least two large books, “A
Practical Guide to SysML” and “SysML Distilled.” In
comparison, the Lifecycle Modeling Language provides a
whole systems engineering ontology and limited
diagramming that completely subsumes SysML. However,
LML can still be explained in a very thin book, “Essential
LML.” You can see the comparison in the picture to the
right.

You probably are asking, “How is that possible that LML
subsumes SysML?” By using an ontological approach that
defines a set of entity classes and their relationships, along
with the attributes of both, LML provides all the elements
of a real language (nouns, verbs, adjectives, and adverbs).
This ontology can be used to capture information easily
and efficiently. Then that information can be displayed in
many ways, including all the nine SysML diagram types.

-7-

The Innoslate® tool proves this assertion, as it produces all
nine SysML diagrams (and many more) from this ontology
as extended in Version 1.1 of the LML specification. In
addition to the SysML diagrams, Innoslate produces the
LML Action Diagram, which represents the same
information as the SysML Activity Diagram, but in a
significantly more understandable form. We can see this
when we compare side by side the two types of diagrams,
as shown below.

LML Action Diagram Example

SysML Activity Diagram

-8-

In the SysML diagram, I need to know what the diamond
and fork symbols mean. In the Action Diagram, I know
exactly what they mean, because the words: OR, LOOP,
and Decomposed, make their intent clear. In addition, in
SysML, I cannot just allocate the decision points to who or
what performs them. I can in LML. Of course, if there were
only two symbols I needed to decipher, then I would not
care as much, but SysML has over 30 such symbols. You
will need a “3-D decoder ring” to fully understand how to
use all the symbols, hence the very large books and long
training classes needed to try to learn SysML. This learning
curve translates into a significant investment in the
workforce to get them up to speed on this complex
language. Of course, electrical engineers, mechanical
engineers, logistics experts, and all the other disciplines
have their own languages and have no interest in learning
something this complex.

You might say, “But of course, MagicDraw overcomes these
limitations in SysML?” The answer to that is not as well. In
particular, if we go back to the list of systems engineering
tasks, MagicDraw only does one “well:” System
Architecture Development. Although MagicDraw has some
limited requirements capability, almost everyone uses
another requirements tool in conjunction with it. Innoslate
by comparison has a robust Requirements View that
includes automated requirements quality checking using
the artificial intelligence technique of Natural Language
Parsing (NLP). The requirements then can be directly
traced to the diagram entities within the same tool,
resulting in one database and no configuration
management problems that you encounter having two
databases. Innoslate also has a built-in Test Center for the
V&V activities. In addition, Innoslate provides Discrete
Event and Monte Carlo simulators to verify that the Action
(or Activity) Diagrams have been correctly done. We use
that same approach to support Program Planning,
Monitoring, and Control.

-9-

So back to the ROI discussion. Can MBSE provide a
healthy ROI? Only if we do all the things we need to do in
systems engineering. In addition, if we can use modern
technology to help automate these difficult tasks, we can
provide even higher ROI than systems engineering by
itself. Innoslate and LML provide a means to provide this
higher ROI, while MagicDraw and SysML actually cost
much, much more to implement and you end up with a
poorer result. So, if you want ROI from your MBSE
investment, use Innoslate and LML.

So far, we have identified the return on investment (ROI)
for systems engineering (and program management) and
discussed MBSE and the fact that the type of modeling
techniques and tools will determine the amount of ROI.
Now in the next section, we will try to quantify the
differences.

In general, today in systems engineering we have three
types of techniques: ad hoc (the most prevalent); Systems
Modeling Language (SysML); and Lifecycle Modeling
Language (LML). The ad hoc requires you to follow system
engineering processes to the letter manually, using
nothing but MS Office (MS Word, MS Excel, MS
PowerPoint/Visio, MS Access, MS Project). The SysML
technique requires that you follow the systems
engineering processes with some rule checking available,
the rules for SysML diagrams, and supplement the
“modeling” with requirements, testing, simulation, risk,
and several other tools. So, for this analysis I will look at a
suite of tools to perform the systems engineering,
choosing the most common “MBSE” tools being used
(DOORS, MagicDraw, Python/Cameo Simulation Toolkit,
Risk Register, MS Project, and MS SharePoint). The LML
technique requires following systems engineering
processes with extensive rule checking using Natural
Language Parsing (NLP) technology, and Innoslate®. Note
that several other popular tools could fit into this latter
category since they are also ontology-based, but they do
not have the complete feature set and I will let the owners
of those tools defend their ROI.

-10-

To assess the ROI, we will assume to use the systems
engineering tasks of Mr. Elm’s paper mentioned earlier.

To simplify the analysis a bit, the above tasks are grouped
into the following 7 categories: Requirements [for both
Development and Management]; Modeling [to include
Interface Management and System Architecture
Development]; Simulation [for Trade Studies];
Configuration Management (CM); Program Management
(PM) [Program Planning, Monitoring, and Control]; Risk
Management (RM); and Integration, Verification, and
Validation (IVV) [Product Integration, Verification, and
Validation Planning and Oversight]. Now we want to get
down a level in each area to identify specific tasks so that
we can estimate the time it takes to accomplish these sub-
tasks for each MBSE approach. The figure below shows the
individual sub-tasks required. This list is not exhaustive but
should be sufficient for this analysis.

-11-

These tasks represent the “operations and maintenance”
phase of systems engineering, while the initial startup
costs are reflected in the price of the tools and the time to
learn them. An additional source of costs comes from
intangibles, such as collaboration and reuse. Clearly, there
is a benefit in those intangibles, but it would be difficult to
determine a value for them, so I won’t try in this paper.
Since most of the cost/benefit should be in the operational
use of systems engineering, I will address that first.

ROI ANALYSIS OFROI ANALYSIS OF
PERFORMING SYSTEMSPERFORMING SYSTEMS
ENGINEERINGENGINEERING
Since every project is different, we often have to create a
“basis of estimate” (BOE) based on “engineering
judgment.” Having performed this analysis for decades, I
feel fully qualified to do this for systems engineering. I have
been involved in over 100 proposals on the topic, where we
had to create the “Tier 3” Work Breakdown Structure
(WBS) cost estimate. The hierarchy chart essentially
represents WBS. We only need to associate costs with it.
Labor cost is usually expressed in the amount of time it
would take to perform a specific task. The BOE includes
both the time and the rationale for the time. Also, since we
are in many ways going to have to compare “apples and
oranges” to assess these tasks, we don’t want to do what
we would do for a proposal, which would be to associate a
specific labor category, which had a certain cost per hour
then allowing the pricing people to come up with a dollar
number. That would only be a point solution. Instead, I
created an “Ease of Use” score from 0 to 5, with 5 being
easiest, 1 being hardest, and 0 meaning they can’t do it at
all. So, we will use the times estimated for each method for
each task to assign this relative score. The table below
shows a few examples of this analysis.

-12-

When completing this analysis, we ended up with the
overall results shown in the graph below. This chart shows
that the current SysML-based toolset many people use
does not enhance the ease of use significantly (54 vs. 66)
from just using MS Office. Whereas, the LML-based toolset
(Innoslate) clearly provides a significant advantage over
both. Note I am assuming that ease of use translates to
cost savings, which seems reasonable since the easier it is
to do a job, it follows that people will be able to do that job
quicker. As we all know, in reality, people will spend the
time and money they are given. But this means that LML
will increase productivity by more than double the current
approaches.

-13-

Now let’s look at the startup costs. The table below shows
the two sources of startup costs: the cost of the tools and
the cost of the training. The tool costs shown are rough
estimates and assume a single-user buy. In reality, the
actual numbers are often less per user because they are
procured in larger numbers and over longer periods, but
these provide a relative difference. The $30,000 number
was provided by a US Government customer. The training
“costs” come from discussions with a number of people
who have attended the training for SysML and LML. We
assigned none to the MS Office since almost everyone
knows how to use those tools; although you might want to
take a few classes to get more proficient. So again, on a
relative scale, the SysML Toolset requires roughly 60 to 100
times MS Office and 15 times more than Innoslate. By the
way, the vast majority of Innoslate users never receive
formal training. Users have told us that the online
resources are sufficient for most of their needs.

ROI FROM STARTUP COSTSROI FROM STARTUP COSTS

-14-

Now when we assess the ROI for the SysML vs. LML
approach, it’s clear that SysML is more expensive and thus
has a negative ROI over just using the MS Office toolset.
We think this analysis also demonstrates for a small
additional startup cost, we can provide double the
productivity, which means a 100% ROI.

Therefore, there can be value in MBSE if the right
methodology is used. Unfortunately, many of the current
advocates for MBSE have fixated on using the SysML
approach. We think this analysis demonstrates how wrong
that assumption is. So, if you want to provide meaningful
value to your project you need to use LML and Innoslate.

BOTTOM-LINEBOTTOM-LINE

